PHASE II ENVIRONMENTAL ASSESSMENT

12710 AND 12750 MABURY ROAD SAN JOSE, CALIFORNIA

Prepared for

Mr. Murphy Sabatino 12710 and 12750 Mabury Road San Jose, California 95133

by

Aquifer Sciences, Inc. 3680-A Mt. Diablo Blvd. Lafayette, California 94549

October 5, 2012 212563

Murphy Sabatino 12710 and 12750 Mabury Road San Jose, CA 95133

Subject: Phase II Environmental Assessment

12710 and 12750 Mabury Road, Redwood City, California

Dear Mr. Sabatino:

Aquifer Sciences is pleased to present this report containing the results of the Phase II environmental assessment conducted for the properties at 12710 and 12750 Mabury Road in San Jose, California. We appreciate the opportunity to be of service. If you have any questions regarding this report, please call us.

Respectfully yours,

Justin Evans

Staff Hydrogeologist

Rebecca A. Sterbentz, PG, CHG

President

Enclosure

cc: Mike Campbell, HMH

TABLE OF CONTENTS

1.0	INTRODUCTION	Page No
2.0	SITE DESCRIPTION	1
3.0	SOIL AND GROUNDWATER SAMPLING AND ANALYSIS	1
4.0	ANALYTICAL DATA EVALUATION 4.1 Analytical Data Evaluation for Soil 4.2 Analytical Data Evaluation for Groundwater	3 3 4
5.0	SUMMARY AND CONCLUSIONS	5
6.0	RECOMMENDATIONS	6
7.0	LIMITATIONS	6
Figu Figu	URES re 1. Vicinity Map re 2. Map Showing Sampling Locations	
Tabl Tabl Tabl Tabl	BLES e 1. Analytical Data for Soil – Pesticides e 2. Analytical Data for Soil – Petroleum Hydrocarbons and VOCs e 3. Analytical Data for Soil – Metals e 4. Analytical Data for Groundwater – Petroleum Hydrocarbons and VOC e 5. Analytical Data for Groundwater – Metals	Cs

APPENDICES

Appendix A. Drilling Logs

Appendix B. Laboratory Reports and Chain-of-Custody Documentation

PHASE II ENVIRONMENTAL ASSESSMENT 12710 and 12750 Mabury Road, San Jose, California September 2012

1.0 INTRODUCTION

This report presents the results of the Phase II environmental assessment conducted for the properties (the "Site") located at 12710 and 12750 Mabury Road in San Jose, California (Figure 1). The objectives of this assessment were to: 1) collect and analyze soil samples near each of the recognized environmental conditions identified during the Phase I assessment, 2) collect and analyze groundwater samples to evaluate potential impacts from the recognized environmental conditions, 3) evaluate and compare analytical data for soil and groundwater samples to regulatory limits, and 4) determine the scope of any soil or groundwater remediation that may be warranted. Soil and groundwater sampling and analysis were performed in accordance with our work plan dated August 31, 2012.

2.0 SITE DESCRIPTION

The Site consists of approximately 3.4 acres of land and is located at 12710 and 12750 Mabury Road, San Jose, California (Figures 1 and 2). Prior to 1965, the Site was used as agricultural land. As shown in aerial photographs, orchards were present on the Site from 1939 to 1965. Two single-family homes are currently located on the Site. The area surrounding the homes includes patios, a pool, concrete-paved driveways, greenhouses, sheds, outdoor restrooms, planting areas, and landscaping.

The single-family homes were constructed in the mid-1960s. The eastern portion of the Site is made available to the Master Gardeners of Santa Clara County for organic gardening, cultivation trials and experimentation, and growing produce for charitable contribution.

3.0 SOIL AND GROUNDWATER SAMPLING AND ANALYSIS

On September 6, 2012, soil and groundwater sampling was conducted at nine locations across the Site. The sampling locations, B1 through B9, are illustrated on Figure 2.

Prior to drilling, each proposed boring location was marked and Underground Service Alert was notified to check for the presence of underground utilities. In addition, a private utility-line locator (C. Cruz Sub-Surface Locators) was retained to check the vicinity of each proposed boring.

The soil and groundwater sampling program was conducted by Aquifer Sciences field staff working under the direction of a California Professional Geologist. Environmental Control

Associates, a C-57 certified environmental drilling company, performed the subsurface work using a Geoprobe 5410 truck-mounted rig equipped with a 2-inch diameter sampler and drive rods. Soil samples and cuttings were examined for lithologic identification and visible signs of contamination. Copies of the drilling logs are included in Appendix A.

All drilling equipment and tools were washed with an Alconox solution, rinsed with tap water, and rinsed with distilled water before the field program began and after each use. Sampling equipment was also washed with an Alconox solution, rinsed with tap water, and rinsed with distilled water prior to each use.

Soil samples were collected from borings B1, B2, B3, B4, and B8 at depths of 1, 3, and 6 feet below ground surface. Soil samples were collected from borings B5, B6, B7, and B9 at a depth of 1 foot below ground surface. The soil samples were collected in clean liners. The liners were sealed, labeled, stored on ice in a cooler at 4° Celsius, and transported under chain-of-custody protocol within 24 hours of collection to McCampbell Analytical, a state-certified analytical laboratory, located in Pittsburg, California.

In total, 19 soil samples were collected from the nine borings. Of these, 14 samples from the 1- and 3-foot depths within each boring were designated for laboratory analysis. The remaining five samples from the 6-foot depths were placed on hold at the laboratory for possible future analysis. The 1-foot deep samples from borings B1, B2, B5, B6, B7, and B8 were analyzed for total petroleum hydrocarbons identified as gasoline (TPH-gasoline), TPH-diesel and TPH-motor oil by EPA Method 8015B with silica gel cleanup. The 1-foot deep samples from borings B1 and B2 were analyzed for volatile organic compounds (VOCs) and fuel oxygenates by EPA Method 8260B. The 1-foot deep samples from borings B2 and B3 were also analyzed for the CAM 17 metals by EPA Method 6020. The 1- and 3-foot deep samples from borings B1, B2, B3, B4, B5, B8, and B9 were analyzed for organochlorine pesticides by EPA Method 8081A, and arsenic and lead by EPA Method 6020.

Grab groundwater samples were collected from two of the nine boring locations (B2 and B8). Groundwater samples were collected from the borings at depths of approximately 28 to 32 feet below ground surface. Each groundwater sample was collected using new tubing and a peristaltic pump. Reusable sampling equipment was washed with an Alconox solution, rinsed with tap water, and rinsed with distilled water prior to each use.

Samples were collected in clean bottles supplied by the analytical laboratory. The bottles were sealed, labeled, stored on ice in a cooler at 4° Celsius, and transported under chain-of-custody protocol within 24 hours of collection to McCampbell Analytical. After sampling was completed, each boring was filled and sealed with Portland cement.

Both groundwater samples were analyzed for TPH-gasoline, TPH-diesel, and TPH-motor oil by EPA Method 8015B with silica gel cleanup and VOCs and fuel oxygenates by EPA Method 8260B. Boring B2 was also analyzed for CAM 17 metals by EPA Method 200.8.

4.0 ANALYTICAL DATA EVALUATION

The results of laboratory analysis performed on the soil and groundwater samples collected on September 6, 2012, are presented in Tables 1 through 5. Copies of the laboratory analytical reports and chain-of-custody documentation are included in Appendix B.

4.1 ANALYTICAL DATA EVALUATION FOR SOIL

The analytical results were compared to regulatory standards to evaluate the environmental condition of the soil. One of the currently applicable regulatory guidelines is given by the California Environmental Protection Agency (Cal/EPA), which consists of California human health screening levels (CHHSLs) for residential properties. Another set of currently applicable regulatory guidelines is given by the Regional Water Quality Control Board (RWQCB), which consists of environmental screening levels (ESLs) for residential properties. The presence of a chemical at concentrations in excess of a CHHSL or ESL does not indicate that adverse impacts to human health are occurring, but suggests that further evaluation of potential human health concerns may be warranted. The analytical data were also compared to the Total Threshold Limit Concentration (TTLC) values established by the State of California to provide concentration limits for the classification of hazardous substances. In addition, the State of California has established Soluble Threshold Limit Concentration (STLC) values to provide soluble concentration limits for the classification of hazardous substances. As a rule-of-thumb, samples that contain an analyte at concentrations exceeding the numerical value of 10 times the STLC should be analyzed for soluble concentrations.

Table 1 summarizes the analytical data for organochlorine pesticides in soil. Low concentrations of a-chlordane, g-chlordane, p,p-dichlorodiphenyldichloroethane (DDD), p,p-dichlorodiphenyldichloroethene (DDE), and p,p-dichlorodiphenyltrichloroethane (DDT) were detected in one or another soil sample from borings B2, B3, B4, B5, and B9 from the 1- and 3-foot depths. None of the pesticide concentrations detected in the samples exceeded the CHHSLs, ESLs, TTLCs, or STLCs. No other pesticides were detected in the samples. These low pesticide concentrations in soil are consistent with the former agricultural usage of the Site.

Table 2 summarizes the analytical data for petroleum hydrocarbons and VOCs detected in the soil samples. TPH-gasoline was not detected in any of the soil samples. Low concentrations of TPH-diesel, up to 6.2 milligrams per kilogram (mg/kg), were detected in six samples. None of these TPH-diesel concentrations exceeded the residential ESL of 83 mg/kg. Low concentrations of TPH-motor oil (up to 49 mg/kg) were detected in four samples. None of

these TPH-motor oil concentrations exceeded the residential ESL of 370 mg/kg. VOCs and fuel oxygenates were not detected in any of the soil samples.

Table 3 summarizes the analytical data for metals detected in the soil samples. Low concentrations of metals were detected in all of the soil samples. Metals occur naturally in soil and rock, and are typically present at varying concentrations. None of the metals concentrations exceeded the CHHSLs or ESLs, except for arsenic and vanadium. Arsenic was detected in every sample at concentrations between 6.3 and 10 mg/kg. The CHHSL for arsenic is 0.07 mg/kg, and the ESL is 0.39 mg/kg. Arsenic concentrations up to approximately 20 mg/kg are within background levels for soil in the San Jose area. Vanadium was detected in two samples (B2-1 and B3-1) at concentrations of 55 and 44 mg/kg, respectively. The CHHSL for vanadium is 530 mg/kg, and the ESL is 16 mg/kg. The presence of vanadium in soil is common in the San Jose area and is likely naturally-occurring at these concentrations.

None of the metals concentrations, except chromium, exceeded the rule-of-thumb comparison of ten times the STLC. Chromium was detected in samples B2-1 and B3-1 at concentrations of 65 and 56 mg/kg, respectively. Ten times the STLC value is 50 mg/L. Chromium occurs naturally at these concentrations in soil in the San Jose area.

4.2 Analytical Data Evaluation for Groundwater

The analytical data were compared to regulatory standards to evaluate the groundwater quality. The currently applicable regulatory guidelines are given by the RWQCB and consist of the Tier 1 ESLs for groundwater (Table A).

Table 4 summarizes the analytical data for petroleum hydrocarbons and VOCs detected in the groundwater samples from borings B2 and B8. TPH-gasoline, TPH-diesel, and TPH-motor oil were not detected in any of the groundwater samples. VOCs and fuel oxygenates were not detected in any of the groundwater samples

Table 5 summarizes the analytical data for the CAM 17 metals detected in the groundwater sample from boring B2. Ten of the CAM 17 metals (barium, chromium, cobalt, copper, mercury, molybdenum, nickel, selenium, vanadium, and zinc) were detected in sample B2. Metals occur naturally in soil and groundwater, and the concentrations of metals detected in the groundwater samples at the Site appear to be representative of background conditions for the San Jose area. None of the metals concentrations in the samples exceeded the ESLs. The laboratory reported the presence of sodium, calcium, and magnesium salts, which is likely a byproduct of the septic tank and leach field.

5.0 SUMMARY AND CONCLUSIONS

In September 2012, Aquifer Sciences performed a Phase II environmental assessment for the Site located at 12710 and 12750 Mabury Road in San Jose, California. The main objectives of the Phase II assessment were to: 1) collect and analyze soil samples near each of the recognized environmental conditions identified during the Phase I assessment, 2) collect and analyze groundwater samples to evaluate potential impacts from the recognized environmental conditions, 3) evaluate and compare analytical data for soil and groundwater samples to regulatory limits, and 4) determine the scope of any soil or groundwater remediation that may be warranted.

Soil and groundwater samples were collected from nine borings across the Site. The sampling locations were selected based on the findings and conclusions of the Phase I environmental assessment. Soil sampling depths were selected mainly to evaluate the presence and distribution of agriculturally-related chemicals and the recognized environmental conditions identified in the Phase I environmental assessment. Grab groundwater samples were collected from two of the nine borings. Based on the assessment results, the following conclusions can be made:

- Soil encountered in the borings primarily consisted of clay, silt, sand and gravel. No evidence of staining or odor was apparent during sampling.
- The pesticide concentrations detected in soil include a-chlordane, g-chlordane, DDD, DDE, and DDT. None of the pesticide concentrations exceeded the residential CHHSLs or ESLs.
- Low concentrations of petroleum hydrocarbons (TPH-diesel and TPH-motor oil) were detected in some of the soil samples. None of these detections exceeded the residential ESLs.
- Metals occur naturally in soil and rock and were detected in varying concentrations in all of the samples. Arsenic, chromium, and/or vanadium were detected in many samples at concentrations exceeding one and/or another of the applicable regulatory guidelines.
- Arsenic was detected in every soil sample. Soils of the San Jose area typically contain background concentrations of arsenic up to approximately 20 mg/kg. None of the soil samples contained arsenic above the background concentration.
- Chromium was detected at low concentrations in the soil samples, but did not exceed the residential CHHSL or ESL. Chromium exceeded the rule-of-thumb comparison of ten times the STLC in two of the samples. The presence of chromium in soil is common in the San Jose area and is likely natually-occuring at these concentrations.

- Vanadium was detected in two soil samples at concentrations exceeding the residential ESL, but not the residential CHHSL. The presence of vanadium in soil is common in the San Jose area and is likely naturally-occurring at these concentrations.
- The analytical data indicate that the soil quality is consistent with the Site's former agricultural usage. Shallow soil at the Site contains residual concentrations of pesticides; however, none exceeded residential CHHSLs or ESLs.
- The groundwater samples were analyzed for petroleum hydrocarbons, VOCs, and/or metals. Petroleum hydrocarbons and VOCs were not detected in the groundwater samples.
- Ten of the CAM 17 metals (barium, chromium, cobalt, copper, mercury, molybdenum, nickel, selenium, vanadium, and zinc) were detected in groundwater sample B2. None of the metals concentrations in the groundwater sample exceeded the ESLs.

6.0 RECOMMENDATIONS

The results of the Phase II assessment indicate that the environmental quality of soil and groundwater is favorable. The analytical data show that the concentrations of pesticides, petroleum hydrocarbons, and VOCs in soil and groundwater were either not detected or do not exceed the current regulatory screening limits given as residential CHHSLs and ESLs. Arsenic, chromium, and vanadium were detected in soil at low concentrations exceeding at least one regulatory limit, but not exceeding naturally-occuring concentrations in the San Jose area.

It is our understanding that the Site will be redeveloped for multi-family residential housing. Although there is no need to perform any environmental remediation based on the results of the Phase II assessment and current Site usage, the City of San Jose may have specific objectives regarding soil quality for certain residential development scenarios.

7.0 LIMITATIONS

This environmental assessment was performed in accordance with the practices and procedures generally accepted in the consulting engineering field. Our professional judgment regarding the potential for contamination at the Site is based on limited data; no other warranty is given or implied by this report. This document was prepared exclusively for Murphy Sabatino. It is intended for use only by Mr. Sabatino, his agents, and assignees. No other person or entity may rely upon the report without the expressed written consent of Aquifer Sciences, Inc.

Figure 1. VICINITY MAP 12710 and 12750 Mabury Road, San Jose, California

scale

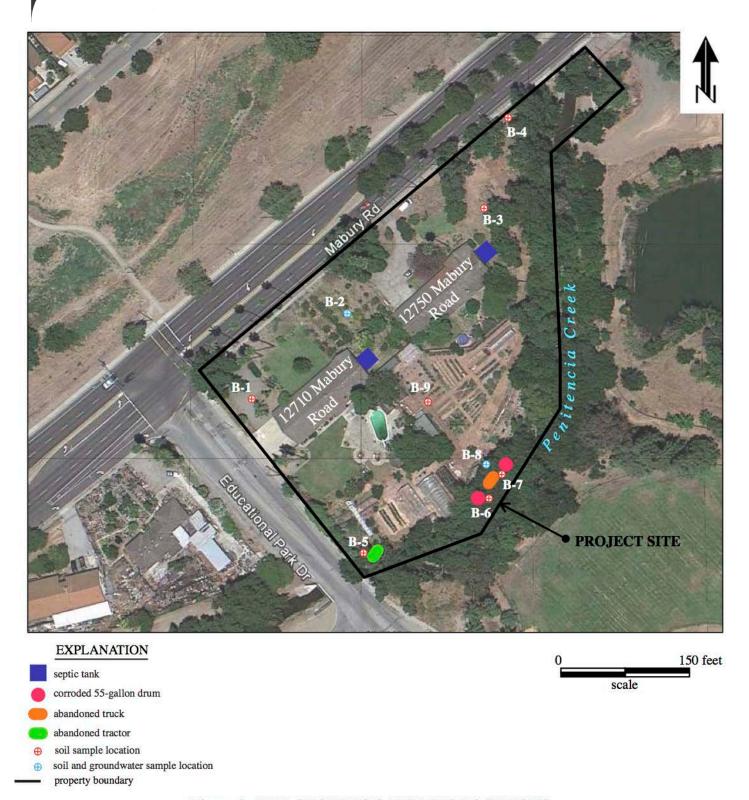


Figure 2. MAP SHOWING SAMPLING LOCATIONS 12710 and 12750 Mabury Road, San Jose, California

Table 1. ANALYTICAL DATA FOR SOIL – Pesticides 12710 and 12750 Mabury Road, San Jose, California

Sampling Location	Sampling Date	Sample Depth (feet)	a-Chlordane (mg/kg)	g-Chlordane (mg/kg)	DDD (mg/kg)	DDE (mg/kg)	DDT (mg/kg)	Dieldrin (mg/kg)	Other Pesticides (mg/kg)
B1-1	9/6/12	1	ND	ND	ND	ND	ND	ND	ND
B1-3	9/6/12	3	ND	ND	ND	ND	ND	ND	ND
B2-1	9/6/12	1	ND	ND	ND	0.0039	0.0070	ND	ND
B2-3	9/6/12	3	ND	ND	ND	ND	ND	ND	ND
B3-1	9/6/12	1	ND	ND	ND	0.0044	ND	ND	ND
B3-3	9/6/12	3	ND	ND	ND	ND	0.0067	ND	ND
B4-1	9/6/12	1	ND	0.0014	0.0017	0.23	0.036	ND	ND
B4-3	9/6/12	3	ND	ND	ND	0.0010	ND	ND	ND
B5-1	9/6/12	1	0.0032	0.0015	ND	0.047	0.036	ND	ND
B6-1	9/6/12	1	NA	NA	NA	NA	NA	NA	NA
B7-1	9/6/12	1	NA	NA	NA	NA	NA	NA	NA
B8-1	9/6/12	1	ND	ND	ND	ND	ND	ND	ND
B8-3	9/6/12	3	ND	ND	ND	ND	ND	ND	ND
B9-1	9/6/12	1	ND	ND	ND	0.0060	0.0072	ND	ND
Reporting Lir	nit		0.001	0.001	0.001	0.001	0.001	0.001	varies
Residential C	HHSL		0.43	0.43	2.3	1.6	1.6	0.035	varies
Residential E	SL		0.44	0.44	2.4	1.7	1.7	0.0023	varies
TTLC			2.5	2.5	1	1	1	8	varies
STLC (mg/L)			0.25	0.25	0.1	0.1	0.1	0.8	varies

mg/kg = milligrams per kilogram (parts per million or ppm)

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration (units are mg/L)

NA = not analyzed

ND = not detected above the reporting limit

DDD = p,p-dichlorodiphenyldichloroethane

DDE = p,p-dichlorodiphenyldichloroethene

DDT = p,p-dichlorodiphenyltrichloroethane

CHHSL = California human health screening level, California Environmental Protection Agency

ESL = Tier 1 environmental screening level, Table A, San Francisco Regional Water Quality Control Board, May 2008

Table 2. ANALYTICAL DATA FOR SOIL – Petroleum Hydrocarbons and VOCs 12710 and 12750 Mabury Road, San Jose, California

Sampling Location	Sampling Date	Sample Depth (feet)	TPH- gasoline (mg/kg)	TPH- diesel (mg/kg)	TPH- motor oil (mg/kg)	VOCs (mg/kg)
B1-1	9/6/12	1	ND	2.4	ND	ND
B1-3	9/6/12	3	NA	NA	NA	NA
B2-1	9/6/12	1	ND	3.6	7.9	ND
B2-3	9/6/12	3	NA	NA	NA	NA
B3-1	9/6/12	1	NA	NA	NA	NA
B3-3	9/6/12	3	NA	NA	NA	NA
B4-1	9/6/12	1	NA	NA	NA	NA
B4-3	9/6/12	3	NA	NA	NA	NA
B5-1	9/6/12	1	ND	4.1	26	NA
B6-1	9/6/12	1	ND	5.0	28	NA
B7-1	9/6/12	1	ND	6.2	49	NA
B8-1	9/6/12	1	ND	2.7	ND	NA
B8-3	9/6/12	3	NA	NA	NA	NA
B9-1	9/6/12	1	NA	NA	NA	NA
Reporting Limit			1.0	1.0	5.0	0.004 - 0.1
Residential CHHSL			NE	NE	NE	varies
Residential ESL			83	83	370	varies

mg/kg = milligrams per kilogram (parts per million or ppm)

NA = not analyzed

ND = not detected above the reporting limit

NE = none established

TPH = total petroleum hydrocarbons

VOCs = volitile organic compounds

CHHSL = California human health screening level, California Environmental Protection Agency

ESL = Tier 1 environmental screening level, Table A, San Francisco Regional Water Quality Control Board, May 2008

Table 3. ANALYTICAL DATA FOR SOIL – Metals 12710 and 12750 Mabury Road, San Jose, California

	Sampling Date	Sample Depth	Antimony	Arsenic	Barium	Beryllium			Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Location	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B1-1	9/6/12	1	NA	6.3	NA	NA	NA	NA	NA	NA	7.6	NA	NA	NA	NA	NA	NA	NA	NA
B1-3	9/6/12	3	NA	9.5	NA	NA	NA	NA	NA	NA	8.4	NA	NA	NA	NA	NA	NA	NA	NA
B2-1	9/6/12	1	1.6	10	490	0.55	0.48	65	14	59	25	0.087	0.93	86	ND	ND	ND	52	230
B2-3	9/6/12	3	NA	7.5	NA	NA	NA	NA	NA	NA	15	NA	NA	NA	NA	NA	NA	NA	NA
B3-1	9/6/12	1	0.54	10	240	ND	0.26	56	12	53	23	0.066	0.83	71	ND	ND	ND	44	61
B3-3	9/6/12	3	NA	9.1	NA	NA	NA	NA	NA	NA	8.7	NA	NA	NA	NA	NA	NA	NA	NA
B4-1	9/6/12	1	NA	8.6	NA	NA	NA	NA	NA	NA	14	NA	NA	NA	NA	NA	NA	NA	NA
B4-3	9/6/12	3	NA	7.9	NA	NA	NA	NA	NA	NA	7.5	NA	NA	NA	NA	NA	NA	NA	NA
B5-1	9/6/12	1	NA	6.3	NA	NA	NA	NA	NA	NA	17	NA	NA	NA	NA	NA	NA	NA	NA
B6-1	9/6/12	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B7-1	9/6/12	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B8-1	9/6/12	1	NA	8.5	NA	NA	NA	NA	NA	NA	48	NA	NA	NA	NA	NA	NA	NA	NA
B8-3	9/6/12	3	NA	6.3	NA	NA	NA	NA	NA	NA	6.3	NA	NA	NA	NA	NA	NA	NA	NA
B9-1	9/6/12	1	NA	8.3	NA	NA	NA	NA	NA	NA	13	NA	NA	NA	NA	NA	NA	NA	NA
Reporting Lin	mit		0.5	0.5	5.0	0.5	0.25	0.5	0.5	0.5	0.5	0.05	0.5	0.5	0.5	0.5	0.5	0.5	5.0
Residential C			30	0.07	5.200	150	1.7	100,000	660	3,000	80	18	380	1,600	380	380	5.0	530	23,000
Residential E			6.3	0.39	750	4.0	1.7	750	40	230	200	1.3	40	150	10	20	1.3	16	600
STLC (mg/L)			15	5.0	100	0.75	1.0	5.0	8.0	25	5.0	0.2	350	20	1.0	5.0	7.0	24	250

mg/kg = milligrams per kilogram (parts per million or ppm)

NA = not ananlyzed

ND = not detected

CHHSL = California human health screening level, California Environmental Protection Agency

ESL = Tier 1 environmental screening level, Table A, San Francisco Regional Water Quality Control Board, May 2008

STLC = Soluble Threshold Limit Concentration (units are mg/L)

6.3 = Bold font indicates that the concentration exceeds the ESL and/or the CHHSL.

= Shaded value indicates that the concentration exceeds ten times the STLC for the compound.

Table 4. ANALYTICAL DATA FOR GROUNDWATER – Petroleum Hydrocarbons and VOCs 12710 and 12750 Mabury Road, San Jose, California

Sampling Location	Sampling Date	TPH-gasoline $(\mu g/L)$	TPH-diesel (µg/L)	TPH-motor oil $(\mu g/L)$	VOCs (µg/L)	_
B2	9/6/12	ND	ND	ND	ND	
B8	9/6/12	ND	ND	ND	ND	
Reporting Lim	it	50	50	250	0.2 - 10	
ESL		100	100	100	varies	

 μ g/L = micrograms per liter (parts per billion or ppb)

ND = not detected

TPH-gasoline = total petroleum hydrocarbons, quantified as gasoline

TPH-diesel = total petroleum hydrocarbons, quantified as diesel

TPH-motor oil = total petroleum hydrocarbons, quantified as motor oil

VOCs = volatile organic compounds

ESL = Tier 1 environmental screening level, Table A, San Francisco Regional Water Quality Control Board, May 2008

Table 5. ANALYTICAL DATA FOR GROUNDWATER – Metals 12710 and 12750 Mabury Road, San Jose, California

Sampling Location	Sampling Date	Antimony (μg/L)	Arsenic (µg/L)	Barium (µg/L)	Beryllium (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Cobalt (µg/L)	Copper (µg/L)	Lead (µg/L)	Mercury (μg/L)	Molybdenum (µg/L)	Nickel (µg/L)	Selenium (µg/L)	Silver (µg/L)	Thallium (µg/L)	Vanadium (µg/L)	Zinc (µg/L)
B2	9/6/12	ND < 2.6	ND < 1.8	36	ND < 0.70	ND < 0.40	3.3	2.5	4	ND < 1.0	0.21	8.0	8.7	22	ND < 1.2	ND < 0.40	1.5	41
В8	9/6/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Reporting Limit		0.5	0.5	5.0	0.5	0.25	0.5	0.5	0.5	0.5	0.025	0.5	0.5	0.5	0.19	0.5	0.5	5.0
ESL		6.0	50	1,000	4.0	5.0	21	140	1,000	15	2.0	35	100	50	35	2.0	15	5,000

 μ g/L = micrograms per liter (parts per billion or ppb)

ND = not detected

ESL = Tier 1 environmental screening level, Table A, San Francisco Regional Water Quality Control Board, May 2008

Note: Reporting limit raised due to high non-reported metals content (salts of sodium, calcium, and magnisium, possibly associated with leach field).

APPENDIX A

DRILLING LOGS

AQUIFER SCIENCES, INC. 212563 NO. PROJECT NAME. ELEVATION AND DATUM (FT.) DRILLING LOCATION 12710 \$ 12750 Son Juse DATE STARTED 9/6/17 DATE FINISHED DRILLER DRILLING AGENCY Brent BORING DEPTH (FT.) WELL DEPTH (FT.) DRILL BIT DRILLING METHOD Direct Push NO. OF SAMPLES OTHER DRILLING EQUIPMENT SEO NO TWO TWO ADDITIONS SAMPLER DEPTH TO WATER (FT.) COMPLETION OTHER SIZE AND TYPE OF CASING FROM TO TYPE OF PERFORATION FT. LOGGED BY: CHECKED BY: FROM TO SIZE AND TYPE OF FILTER PACK TO FT. FROM TYPE OF SEAL FROM TO FT. TYPE OF SEAL SAMPLES GRAPHIC LOG Blow Counts (per 6 in.) OVM (ppmv) Water Level Recovery (%) Sampling Interval DEPTH (FEET) REMARKS DESCRIPTION (Drilling Rate, Fluid Loss, Odor, etc.) start line 20930 gravel - FILL Silly san w/ grave 1 /2 in & GM soilsaple B1-1 @0939 Substanded clasts scriple B1-3 20941 5M Silty-sand no-granel
Bottom of Bring 6' sarple B1-6 20945

河水 計 等

250.77

SHEET ___ of.

BORING NUMBER ___

AQUIFER SCIENCES, INC. PROJECT NAME 212563 ELEVATION AND DATUM (FT.) 12710 \$ 12750 Mabury Rd San Jose DATE STARTED 9/6/17 DATE FINISHED DRILLING AGENCY DRILLER Brent BORING DEPTH (FT.) 24 WELL DEPTH (FT.) DRILLING METHOD DRILL BIT DRILLING EQUIPMENT GOOPTO 540 Jukknown ad SOIL = OTHER SAMPLER DEPTH TO WATER (FT.) SIZE AND TYPE OF CASING COMPLETION OTHER 25.5 FROM TO TYPE OF PERFORATION SIZE AND TYPE OF FILTER PACK FROM TO FT. LOGGED BY: CHECKED BY: FROM TO FT. TYPE OF SEAL FROM TO FT. TYPE OF SEAL **GRAPHIC LOG** SAMPLES Recovery (%)
Blow Counts
(per 6 in.)
OVM
(ppmv) Water Level Lithology DEPTH (FEET) DESCRIPTION REMARKS (Drilling Rate, Fluid Loss, Odor, etc.) Sifty - Send w/ grand / in B start time @ 0950 GM sample 82-1 20455 sample BZ-3 @ 1000 4 SM Silty sand 1. brown Sample B2-6 \$1004 I

clas w/siH dibrown CL med plasticity, most GM 51/4 and w/ yourel 1/4 12 13 clay silty 1. brown Wyrmel GC SHEET_ BORING NUMBER.

AQUIFER SCIENCES, INC. 212563 PROJECT NAME. ELEVATION AND DATUM (FT.) DRILLING LOCATION 12710 \$ 12750 Maburn San Jose, CA DATE STARTED 4/6/12 DATE FINISHED DRILLING AGENCY DRILLER BORING DEPTH (FT.) 78 DRILLING METHOD DIRECT DRILL BIT WELL DEPTH (FT.) Push SAMPLER NO. OF SAMPLES DRILLING EQUIPMENT SOIL = OTHER 5416 trickmenter DEPTH TO WATER (FT.) COMPLETION OTHER FIRST 25.5 FROM TYPE OF PERFORATION TO SIZE AND TYPE FROM TO FT. LOGGED BY: CHECKED BY: OF FILTER PACK TYPE OF SEAL FROM TO TO TYPE OF SEAL FROM GRAPHIC LOG Blow Counts (per 6 in.) OVM (ppmv) Water Level Well Construction Diagram Lithology DEPTH (FEET) DESCRIPTION REMARKS (Drilling Rate, Fluid Loss, Odor, etc.) 15 cley ultill no good ML 16 17 18 SM 21 24. salty day worganics ML V 16 sald & sill Sin

Botton of Bong 281

27

BORING NUMBER __

SHEET ____ of 1

AQUIFER SCIENCES, INC. 212563 PROJECT NAME. NO. DRILLING LOCATION 17710 ELEVATION AND DATUM (FT.) # 12750 Maburn DATE STARTED 9/6/12 DATE FINISHED () DRILLING AGENCY DRILLER Brent DRILLING METHOD DIVECT BORING DEPTH (FT.) WELL DEPTH (FT.) DRILL BIT Push NO. OF SAMPLES SAMPLER SOIL OTHER DRILLING EQUIPMENT XOPTO be 5410 trucks with DEPTH TO WATER (FT.) SIZE AND TYPE OF CASING FIRST COMPLETION OTHER TYPE OF PERFORATION FROM TO CHECKED BY: FROM TO FT. LOGGED BY: OF FILTER PACK FROM TO FT. TYPE OF SEAL FROM TYPE OF SEAL **GRAPHIC LOG** SAMPLES Recovery (%)
Blow Counts (per 6 in.)
OVM
(ppmv) Well Construction Diagram Water Level Sampling Interval DEPTH (FEET) Lithology DESCRIPTION REMARKS (Drilling Rate, Fluid Loss, Odor, etc.) Start time AlUSS ML sity soil litrown Sample B3-1 @ 1100 Sample B3-3 @1105 GM 511+ 1.60mm. 4/ growel. sample 83-6 @ 1106 Botton of Barring = 6

BORING NUMBER __

SHEET ___ of __

AQUIFER SCIENCES, INC. PROJECT NAME 212563 ELEVATION AND DATUM (FT.) DRILLING LOCATION Mabury Rd DATE STARTED 9/6/12 DATE FINISHED 9 DRILLING AGENCY DRILLER DRILLING METHOD Geoprobe Direct Push DRILL BIT BORING DEPTH (FT.) WELL DEPTH (FT.) DRILLING EQUIPMENT GEODODE SYID TWICHAM SAMPLER SOIL -> OTHER DEPTH TO COMPLETION OTHER SIZE AND TYPE OF CASING TYPE OF PERFORATION FROM TO FROM TO FT. LOGGED BY: CHECKED BY: OF FILTER PACK FROM TO FT. TYPE OF SEAL FROM TO FT. TYPE OF SEAL GRAPHIC LOG SAMPLES Sampling Interval Recovery (%) Blow Counts (per 6 in.) OVM (ppmv) Well Construction Diagram Water Level Lithology DEPTH (FEET) DESCRIPTION REMARKS (Drilling Rate, Fluid Loss, Odor, etc.) stort time 21/15 torganies 1. brown soil ML B4-1 @ 1119 surple 84-3 @ 1121 send-silt 1. brown of GM serple 84-6 2/123 Button of Boring 6'

BORING NUMBER ___

SHEET ___ of ___

AQUIFER SCIENCES, INC. 212563 PROJECT NAME DRILLING LOCATION ELEVATION AND DATUM (FT.) 12710 & 12750 Mabury Rd DATE FINISHED 9/6/12 DRILLING AGENCY DRILLER DATE STARTED 9/6/17 Brent BORING DEPTH (FT.) 32 DRILLING METHOD DRILL BIT Direct Dush WELL DEPTH (FT.) DRILLING EQUIPMENT SAMPLER 5410 SOIL OTHER SIZE AND TYPE OF CASING DEPTH TO WATER (FT.) COMPLETION OTHER TYPE OF PERFORATION FROM TO FT. SIZE AND TYPE FROM TO FT. LOGGED BY: CHECKED BY: OF FILTER PACK TYPE OF SEAL FROM TO FT. TYPE OF SEAL TO FROM FT. **GRAPHIC LOG** Blow Counts (per 6 in.)
OVM (ppmv) Well Construction Diagram Water Level DEPTH (FEET) Lithology DESCRIPTION REMARKS (Drilling Rate, Fluid Loss, Odor, etc.) AND 1130 organics - silty soil ML 20pe B8-1 @ 1130 Sarple 188-3 @ 1137 SILTY said 1. brown 5 sauple B8-6 @ 1140 11thology not recorded below 6'

Bottom of

BORING NUMBER SHEET of

sarple B8 21145

APPENDIX B

LABORATORY REPORT

AND

CHAIN-OF-CUSTODY DOCUMENTATION

Analytical Report

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled: 09/06/12
3680-A Mt. Diablo Blvd		Date Received: 09/06/12
3000 MML DIAGIO BIVA	Client Contact: Cheri Whipp	Date Reported: 09/13/12
Lafayette, CA 94549	Client P.O.:	Date Completed: 09/12/12

WorkOrder: 1209114

September 13, 2012

Dear Cheri:

Enclosed within are:

- 1) The results of the 14 analyzed samples from your project: #212563,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

3680-A Mt. Diablo Blvd. (925) 283-9098

TIQU	II LIY	OCILI	VCLC	, 11	10	•			Lafa	yette,	CA	945	19	(9	25) 2	83-9	133 F	AX	(IAIN	OF	Cl	510	UDY	Ď.
	GLO	BAL ID#					-				Clean Bel	TABE	PA 625 / 820 100	Ygenates	/ So	13 Priorie	Toda			/	//	/		Em ED Gee		7
Project Number:	2125				/	Numb	er of C		ners	100	EX	Halo		10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5	Posticid	60/	//	//		/	///		around	2	VISI	
Sampler(s) Signature(s):		KE	~	/	cryed /	//.	//	1/	/	Motor O.	THE DBTEX	140	EPA 625/83	808/0		Senicis	ead	//	//	/	//c	ontact:	Bedry	or	Churi	
Sample Identification	Date	e Time	.Sample Type	Unpreso	HCI	HNO	N. 200.	//	& Diega	A Gasoli.	EPA	EP46	EPA 62	Z Z	scrals:	7	ke			/.	CWhy	iil: 2020 aqu Co	ref com) @ac	uifer.com	190
B1-1	9/6/1	12 0939	soil	1					X	X		X	X		X	X	7 -					e #				1
B1-3	1	0941		1									\rightarrow		X	X					Must				081	
B2-1		0955		(X	X			X	X								,			001	
B2-3		1000		1"									X		X	X								restaur.		
B3-1		\$ 1100		1									>	X												
B3-3		1105		(. "						\rightarrow		X	X										
B4-1		1119		1				T					λ	1	X	V										
84-3		1121		11									X		X	X										
B5-1		1245		1						X		Ť	\ \		X	X										
86-1		112312	35	1					X	X		1														
87-1		1230		1				K	X	X												1000				
B8-1	1	1130		l					X	X			\rightarrow		X	X		E = 1						112	00 3	
B8-3		1137		1				1	Y				\times		X	X							12			
B9-1	V		V	1								1	X		X	X										
	Relinqu	ished by				Date		Ti	me					1	Rec	ceive	d by					D	ate	Ti	me	
Miller	-11	wille	2			9/6/6	2	15	28			1	7/	11	211	-	/	2	_	8			/12			
				HEA	D SPA	NDITION ACE ABS	ENT_ O IN LA	В	AP CC	PROP	NERS VED	INL		_								, 0/	, -		0	
Analytical laboratory:	McCo	ampbell ,	Analytic	al PRE	SERV	ATION	VOAS	0&0	3 N	METALS	hippi	HER ing n	otes:	ia	1	M	(1				Page	of	

McCampbell Analytical, Inc.

□WaterTrax

Email:

12

The following SampIDs: 001A, 003A, 009A, 010A, 011A, 012A contain testgroup.

WriteOn

CHAIN-OF-CUSTODY RECORD

✓ Email

HardCopy

EQuIS

Accounts Payable

Page 1 of 1

☐ J-flag

5 days

☐ ThirdParty

Prepared by: Maria Venegas

Requested TAT:

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Report to:

Cheri Whipp

WorkOrder: 1209114 ClientCode: ASI

Excel

Bill to:

□ EDF

ras@aquifer.com; cwhipp@aquifer.com

Aquifer Science 3680-A Mt. Diab Lafayette, CA 9 925-283-9098	olo Blvd	cc: jevans@a PO: ProjectNo: #212563	aquifer.com			368	uifer Sc 80-A Mt fayette,	. Diable	o Blvd				Receiv Printe		09/06.	
								Re	questec	Tests (See leg	gend bel	ow)			
Lab ID	Client ID	Matr	ix Collection Da	ate Hold	1	2	3	4	5	6	7	8	9	10	11	12
1209114-001	B1-1	Soi	l 9/6/2012 9:3	39	Α	Α		Α	Α							
1209114-002	B1-3	Soi	l 9/6/2012 9:4	11 🗌	Α			Α								
1209114-003	B2-1	Soi	l 9/6/2012 9:5	55	Α	Α	Α		Α							
1209114-004	B2-3	Soi	l 9/6/2012 10:0	00	Α			Α								
1209114-005	B3-1	Soi	l 9/6/2012 11:0	00	Α		Α									
1209114-006	B3-3	Soi	l 9/6/2012 11:0	05	Α			Α								
1209114-007	B4-1	Soi	l 9/6/2012 11:	19 🗌	Α			Α								
1209114-008	B4-3	Soi	l 9/6/2012 11:	21 🗌	Α			Α								
1209114-009	B5-1	Soi	l 9/6/2012 12:4	45	Α			Α	Α							
1209114-010	B6-1	Soi	l 9/6/2012 12:	35					Α							
1209114-011	B7-1	Soi	l 9/6/2012 12:	30					Α							
1209114-012	B8-1	Soi	l 9/6/2012 11:3	30	Α			Α	Α							
1209114-013	B8-3	Soi	l 9/6/2012 11:3	37	Α			Α								
1209114-014	B9-1	Soi	l 9/6/2012 12:	38	Α			Α								
Test Legend:		00000		0.414	10.0				DD 4.0				-	TDU/S	40),40	
1 8081_5		8260B_S	3	CAM17M	15_5		4		PBAS	MS_S		L		TPH(DI	MO)WSC	i_S
6	7		8				9						10			

Comments:

11

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Aquifer Sciences, Inc).			Date and	d Time Received:	9/6/2012 6:04	1:36 PM
Project Name:	#212563				LogIn Re	eviewed by:		Maria Venegas
WorkOrder N°:	1209114	Matrix: Soil			Carrier:	Client Drop-In		
		<u>Chain</u>	of Cu	stody (COC)	Informatio	<u>n</u>		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquish	ned and received?	Yes	•	No \square			
Chain of custody	agrees with sample lal	pels?	Yes	•	No \square			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	collection noted by Cl	ient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No \square			
		<u>s</u>	ample	Receipt Info	<u>rmation</u>			
Custody seals int	act on shipping contain	ner/cooler?	Yes		No 🗌		NA 🗸	
Shipping contained	er/cooler in good condi	tion?	Yes	✓	No \square			
Samples in prope	er containers/bottles?		Yes	✓	No \square			
Sample container	rs intact?		Yes	✓	No 🗌			
Sufficient sample	volume for indicated to	est?	Yes	✓	No \square			
		Sample Prese	rvatio	n and Hold Ti	ime (HT) In	<u>formation</u>		
All samples recei	ved within holding time	9?	Yes	✓	No 🗌			
Container/Temp B	Blank temperature		Coole	r Temp: 3.8	°C		NA 🗌	
Water - VOA vials	s have zero headspace	e / no bubbles?	Yes		No 🗆 N	o VOA vials submit	ted 🗸	
Sample labels ch	ecked for correct prese	ervation?	Yes	✓	No 🗌			
Metal - pH accept	table upon receipt (pH	<2)?	Yes		No 🗌		NA 🗸	
Samples Receive	ed on Ice?		Yes		No 🗸			
* NOTE: If the "N	o" box is checked, see 	comments below.						
				_ — — — –				

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled: 09/06/12
3680-A Mt. Diablo Blvd		Date Received: 09/06/12
3000-A Mt. Diablo Bivu	Client Contact: Cheri Whipp	Date Extracted: 09/06/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed: 09/07/12-09/08/12
Organochlori	ne Pesticides by GC-ECD (8080 Basic Ta	rget List)*

Organochlorine Pesticides by GC-ECD (8080 Basic Target List)* Extraction Method: SW3550B Analytical Method: SW8081A Work Order: 1209114									
Extraction Method: SW3550B	Ana	alytical Method: SW808	1A		Work Order:	1209114			
Lab ID	1209114-001A	1209114-002A	1209114-003A	1209114-004A					
Client ID	B1-1	B1-3	B2-1	B2-3	Reporting DF				
Matrix	S	S	S	S					
DF	1	1	1	1	MDL	RL			
Compound		Conce	entration		mg/kg	mg/kg			
Aldrin	ND	ND	ND	ND	0.00027	0.001			
a-BHC	ND	ND	ND	ND	0.0001	0.001			
b-BHC	ND	ND	ND	ND	0.00025	0.001			
d-BHC	ND	ND	ND	ND	0.00037	0.001			
g-BHC	ND	ND	ND	ND	0.000097	0.001			
Chlordane (Technical)	ND	ND	ND	ND	0.016	0.025			
a-Chlordane	ND	ND	ND	ND	0.00047	0.001			
g-Chlordane	ND	ND	ND	ND	0.00021	0.001			
p,p-DDD	ND	ND	ND	ND	0.00014	0.001			
p,p-DDE	0.00088,J	ND	0.0039	0.00067,J	0.00032	0.001			
p,p-DDT	ND	ND	0.0070	ND	0.00043	0.001			
Dieldrin	ND	ND	ND	ND	0.00033	0.001			
Endosulfan I	ND	ND	ND	ND	0.00065	0.001			
Endosulfan II	ND	ND	ND	ND	0.0002	0.001			
Endosulfan sulfate	ND	ND	ND	ND	0.00063	0.001			
Endrin	ND	ND	ND	ND	0.00097	0.001			
Endrin aldehyde	ND	ND	ND	ND	0.0002	0.001			
Endrin ketone	ND	ND	ND	ND	0.00013	0.001			
Heptachlor	ND	ND	ND	ND	0.00021	0.001			
Heptachlor epoxide	ND	ND	ND	ND	0.0002	0.001			
Hexachlorobenzene	ND	ND	ND	ND	0.00027	0.01			
Hexachlorocyclopentadiene	ND	ND	ND	ND	0.0004	0.02			
Methoxychlor	ND	ND	ND	ND	0.00089	0.001			
Toxaphene	ND	ND	ND	ND	0.035	0.05			
	Su	rrogate Recoverie	s (%)						
%SS:	111	110	100	107					
Comments									

^{*} water samples in μ g/L, soil/sludge/solid samples in μ g/kg, wipe samples in μ g/wipe, filter samples in μ g/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in μ g/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor.

surrogate diluted out of range or surrogate coelutes with another peak/sample contains surrogate.

J) analyte detected below quantitation limits

when Quality Counts								
Aquifer Sciences, Inc. Client Project ID: #				#212563 Date Sampled: 09/06/12				
2500 4 34 50 11 50 1					Date Received: 09/06/12			
3680-A Mt. Diablo Blvc	1	Client Co	ontact: Cheri Wh	ірр	Date Extracted:	09/06/12		
Lafayette, CA 94549		Client P.0	O.:		Date Analyzed:	09/07/12-09	9/08/12	
	Organo	ochlorine Pestici	des by GC-ECD	(8080 Basic Ta	rget List)*			
Extraction Method: SW3550B		Ana	alytical Method: SW808	1A		Work Order:	1209114	
	Lab ID	1209114-005A	1209114-006A	1209114-007A	1209114-008A			
	Client ID	B3-1	B3-3	B4-1	B4-3	Reporting		
						DF	=1	
	Matrix	S	S	S	S			
	DF	1	1 1 1				DI	
	DF	1	1	1	1	MDL	RL	
Compound	DF	1	_	entration	1	mg/kg	mg/kg	
Compound Aldrin	Dr	ND	_	entration ND	ND			
	DF	-	Conce		ND ND	mg/kg	mg/kg	
Aldrin	Dr	ND	Conce ND	ND		mg/kg 0.00027	mg/kg 0.001	
Aldrin a-BHC	Dr	ND ND	Conce ND ND	ND ND	ND	mg/kg 0.00027 0.0001	mg/kg 0.001 0.001	
Aldrin a-BHC b-BHC	Dr	ND ND ND	Conce ND ND ND	ND ND ND	ND ND	mg/kg 0.00027 0.0001 0.00025	mg/kg 0.001 0.001 0.001	
Aldrin a-BHC b-BHC d-BHC	Dr	ND ND ND ND	Conce ND ND ND ND	ND ND ND ND	ND ND ND	mg/kg 0.00027 0.0001 0.00025 0.00037	mg/kg 0.001 0.001 0.001 0.001	
Aldrin a-BHC b-BHC d-BHC g-BHC	Dr	ND ND ND ND ND	Conce	ND ND ND ND ND 0.00021,J	ND ND ND ND	mg/kg 0.00027 0.0001 0.00025 0.00037 0.000097	mg/kg 0.001 0.001 0.001 0.001 0.001	
Aldrin a-BHC b-BHC d-BHC g-BHC Chlordane (Technical)	Dr	ND ND ND ND ND ND ND ND ND	Conce	ND ND ND ND 0.00021,J ND	ND ND ND ND	mg/kg 0.00027 0.0001 0.00025 0.00037 0.000097 0.016	mg/kg 0.001 0.001 0.001 0.001 0.001 0.025	
Aldrin a-BHC b-BHC d-BHC g-BHC Chlordane (Technical) a-Chlordane	Dr	ND	ND	ND ND ND ND O.00021,J ND ND	ND ND ND ND ND ND ND ND	mg/kg 0.00027 0.0001 0.00025 0.00037 0.000097 0.016 0.00047	mg/kg 0.001 0.001 0.001 0.001 0.001 0.001 0.0025 0.001	
Aldrin a-BHC b-BHC d-BHC g-BHC Chlordane (Technical) a-Chlordane g-Chlordane	Dr	ND	Conce	ND ND ND ND 0.00021,J ND ND ND	ND	mg/kg 0.00027 0.0001 0.00025 0.00037 0.000097 0.016 0.00047 0.00021	mg/kg 0.001 0.001 0.001 0.001 0.001 0.0025 0.001 0.001	
Aldrin a-BHC b-BHC d-BHC g-BHC Chlordane (Technical) a-Chlordane g-Chlordane p,p-DDD	Dr	ND N	ND N	ND ND ND ND 0.00021,J ND ND 0.0014 0.0017	ND	mg/kg 0.00027 0.0001 0.00025 0.00037 0.000097 0.016 0.00047 0.00021 0.00014	mg/kg 0.001 0.001 0.001 0.001 0.001 0.001 0.0025 0.001 0.001 0.001	

%SS:	102	104	110	89						
Comments										
* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.										

ND

Surrogate Recoveries (%)

ND

0.00065

0.0002

0.00063

0.00097

0.0002

0.00013

0.00021

0.0002

0.00027

0.00089

0.035

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.01

0.02

0.001

0.05

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor.

surrogate diluted out of range or surrogate coelutes with another peak/sample contains surrogate.

ND

J) analyte detected below quantitation limits

Endosulfan I

Endosulfan II

Endrin

Endosulfan sulfate

Endrin aldehyde

Heptachlor epoxide

Hexachlorobenzene

Hexachlorocyclopentadiene

Endrin ketone

Methoxychlor

Toxaphene

Heptachlor

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled: 09/06/12				
3680-A Mt. Diablo Blvd		Date Received: 09/06/12				
5000-A Mt. Diablo Bivu	Client Contact: Cheri Whipp	Date Extracted: 09/06/12				
Lafayette, CA 94549	Client P.O.:	Date Analyzed: 09/07/12-09/08/12				
Organochlorine Pesticides by GC-ECD (8080 Basic Target List)*						

Extraction Method: SW3550B	Analytical Method: SW8081A						
Lab ID	1209114-009A	1209114-012A	1209114-013A	1209114-014A			
Client ID	B5-1	B8-1	B8-3	B9-1	Reporting DF		
Matrix	S	S	S	S			
DF	1	1	MDL	RL			
Compound		Conce	entration		mg/kg	mg/kg	
Aldrin	ND	ND	ND	ND	0.00027	0.001	
а-ВНС	ND	ND	ND	ND	0.0001	0.001	
b-BHC	ND	ND	ND	ND	0.00025	0.001	
d-BHC	ND	ND	ND	ND	0.00037	0.001	
g-BHC	ND	ND	ND	ND	0.000097	0.001	
Chlordane (Technical)	0.018,J	ND	ND	ND	0.016	0.025	
a-Chlordane	0.0032	ND	ND	ND	0.00047	0.001	
g-Chlordane	0.0015	ND	ND	ND	0.00021	0.001	
p,p-DDD	0.00080,J	ND	ND	ND	0.00014	0.001	
p,p-DDE	0.047	ND	ND	0.0060	0.00032	0.001	
p,p-DDT	0.036	ND	ND	0.0072	0.00043	0.001	
Dieldrin	ND	ND	ND	ND	0.00033	0.001	
Endosulfan I	ND	ND	ND	ND	0.00065	0.001	
Endosulfan II	ND	ND	ND	ND	0.0002	0.001	
Endosulfan sulfate	ND	ND	ND	ND	0.00063	0.001	
Endrin	ND	ND	ND	ND	0.00097	0.001	
Endrin aldehyde	ND	ND	ND	ND	0.0002	0.001	
Endrin ketone	ND	ND	ND	ND	0.00013	0.001	
Heptachlor	ND	ND	ND	ND	0.00021	0.001	
Heptachlor epoxide	ND	ND	ND	ND	0.0002	0.001	
Hexachlorobenzene	ND	ND	ND	ND	0.00027	0.01	
Hexachlorocyclopentadiene	ND	ND	ND	ND	0.0004	0.02	
Methoxychlor	ND	ND	ND	ND	0.00089	0.001	
Toxaphene	ND	ND	ND	ND	0.035	0.05	
	Su	rrogate Recoverie	s (%)				
%SS:	113	106	97	102			
Comments							

I	* water samples in µg/L,	soil/sludge/solid samples in mg/kg,	wipe samples in µg/wipe,	, filter samples in µg/filter,	product/oil/non-aqueous liquid samples
۱	and all TCLP & SPLP ex	stracts are reported in mg/L.			

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor.

surrogate diluted out of range or surrogate coelutes with another peak/sample contains surrogate.

J) analyte detected below quantitation limits

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled: 09/06/12
2690 A Mt Diable Dlad		Date Received: 09/06/12
3680-A Mt. Diablo Blvd	Client Contact: Cheri Whipp	Date Extracted: 09/06/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed: 09/11/12

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1209114

Lab ID		1209114-001A										
Client ID				B1-1								
Matrix			Domonti	Soil			Daman':					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit					
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005					
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005					
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005					
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005					
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05					
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005					
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005					
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005					
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005					
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005					
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005					
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004					
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005					
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005					
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005					
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005					
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005					
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005					
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005					
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005					
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005					
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1					
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005					
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005					
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005					
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005					
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005					
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005					
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005					
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005					
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005					
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005					
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005					
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005					
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total	ND	1.0	0.005					

Surrogate Recoveries (%)						
%SS1:	114	%SS2:	112			
%SS3:	113		·			

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled: 09/06/12
2690 A Mt Diable Dlvd		Date Received: 09/06/12
3680-A Mt. Diablo Blvd	Client Contact: Cheri Whipp	Date Extracted: 09/06/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed: 09/11/12

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1209114

Lab ID		1209114-003A									
Client ID				B2-1							
Matrix			In .:	Soil			In :				
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reportin Limit				
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005				
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005				
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005				
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005				
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05				
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005				
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005				
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005				
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005				
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005				
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005				
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004				
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005				
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005				
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005				
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005				
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005				
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005				
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005				
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005				
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005				
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1				
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005				
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005				
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005				
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005				
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005				
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005				
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005				
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005				
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005				
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005				
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005				
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005				
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total	ND	1.0	0.005				

Surrogate Recoveries (%)						
%SS1:	113	%SS2:	110			
%SS3:	113					

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

"When Qua	''When Quality Counts''			nccampbell.com / E-mail: main	@mccampbell.co	om
Aquifer Sciences, Inc.	Client Pr	oject ID: #21	2563	Date Sampled:	09/06/12	
				Date Received	09/06/12	
3680-A Mt. Diablo Blvd	Client Co	entaat: Chari V	Vhinn	Date Extracted		
		ontact: Cheri V	у шрр			
Lafayette, CA 94549	Client P.	O.:		Date Analyzed	09/08/12	
	C	CAM / CCR 17 I	Metals*			
Lab ID	1209114-003A	1209114-005	A		Reporting Lin	nit for DF =1;
Client ID	B2-1	B3-1			ND means	not detected eporting limit
Matrix	S	S			S	W
Extraction Type	TOTAL	TOTAL			mg/Kg	mg/L
	ICI	P Metals, Conce	ntration*			'
Analytical Method: SW6020	Ext	traction Method: SW	3050B		Work Order:	1209114
Dilution Factor	1	1			1	1
Antimony	1.6	0.54			0.5	NA
Arsenic	10	10			0.5	NA
Barium	490	240			5.0	NA
Beryllium	0.55	ND			0.5	NA
Cadmium	0.48	0.26			0.25	NA
Chromium	65	56			0.5	NA
Cobalt	14	12			0.5	NA
Copper	59	53			0.5	NA
Lead	25	23			0.5	NA
Mercury	0.087	0.066			0.05	NA
Molybdenum	0.93	0.83			0.5	NA
Nickel	86	71			0.5	NA
Selenium	ND	ND			0.5	NA
Silver	ND	ND			0.5	NA
Thallium	ND	ND			0.5	NA
Vanadium	52	44			0.5	NA
Zinc	230	61			5.0	NA
%SS:	126	111				
Comments						

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \mu m$ filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled: 09/06/12
3680-A Mt. Diablo Blvd		Date Received: 09/06/12
	Client Contact: Cheri Whipp	Date Extracted 09/06/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed 09/07/12-09/08/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

Extraction method: SW	5030B	Analytical methods: SW8015Bm			ork Order:	1209114	
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	Comments	
001A	B1-1	S	ND	1	114		
003A	B2-1	S	ND	1	108		
009A	B5-1	S	ND	1	102		
010A	B6-1	S	ND	1	100		
011A	B7-1	S	ND	1	102		
012A	B8-1	S	ND	1	111		

Reporting Limit for DF =1; ND means not detected at or above the reporting limit	W	NA	NA
	S	1.0	mg/Kg

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled:	09/06/12
3680-A Mt. Diablo Blvd		Date Received:	09/06/12
	Client Contact: Cheri Whipp	Date Extracted:	09/06/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed:	09/08/12-09/11/12

Arsenic and Lead*

Extraction method: SW3050B Analytical methods: SW6020 Work Order: 1209114

Lab ID	Client ID	Matrix	Extraction Type	Arsenic	Lead	DF	% SS	Comments
001A	B1-1	S	TOTAL	6.3	7.6	1	129	
002A	B1-3	S	TOTAL	9.5	8.4	1	126	
004A	B2-3	S	TOTAL	7.5	15	1	116	
006A	B3-3	S	TOTAL	9.1	8.7	1	130	
007A	B4-1	S	TOTAL	8.6	14	1	121	
008A	B4-3	S	TOTAL	7.9	7.5	1	111	
009A	B5-1	S	TOTAL	6.3	17	1	103	
012A	B8-1	S	TOTAL	8.5	48	1	116	
013A	B8-3	S	TOTAL	6.3	6.3	1	109	
014A	B9-1	S	TOTAL	8.3	13	1	124	
	Reporting Limit for DF =1;	W	TOTAL	NA	NA		NA	
ND means not detected at or above the reporting limit		S	TOTAL	0.5	0.5		mg/K	g

ND means not detected at or above the reporting limit	**	TOTAL	IVA	IVA.	IVA		
	S	TOTAL	0.5	0.5	mg/Kg		
*water samples are reported in ug/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid							

^{**}Soil final results are based on 17% water content relative to Soil initial.

samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of 0.45 μm filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled:	09/06/12
3680-A Mt. Diablo Blvd		Date Received:	09/06/12
	Client Contact: Cheri Whipp	Date Extracted:	09/06/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed:	09/07/12-09/13/12

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW	3550B/3630C	Analytical	methods: SW8015B		ν	Vork Order:	1209114
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
1209114-001A	B1-1	S	2.4	ND	1	90	e2
1209114-003A	B2-1	S	3.6	7.9	1	102	e7,e2
1209114-009A	B5-1	S	4.1	26	1	105	e7,e2
1209114-010A	B6-1	S	5.0	28	2	104	e7,e2
1209114-011A	B7-1	S	6.2	49	2	81	e7,e2
1209114-012A	B8-1	S	2.7	ND	1	93	e2

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e7) oil range compounds are significant

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

QC SUMMARY REPORT FOR SW8081A

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 70513 WorkOrder: 1209114

EPA Method: SW8081A Extra	ection: SW3550B					;	Spiked Sam	ple ID:	1209114-005A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
a.y.c	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Aldrin	ND	0.050	115	117	1.36	108	70 - 130	30	70 - 130
g-BHC	ND	0.050	105	106	0.368	95.6	70 - 130	30	70 - 130
p,p-DDT	ND	0.050	108	110	2.00	70.8	70 - 130	30	70 - 130
Dieldrin	ND	0.050	111	115	3.61	103	70 - 130	30	70 - 130
Endrin	ND	0.050	106	108	2.20	96.1	70 - 130	30	70 - 130
Heptachlor	ND	0.050	118	120	1.33	108	70 - 130	30	70 - 130
%SS:	102	0.050	106	111	5.01	93	70 - 130	30	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70513 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209114-001A	09/06/12 9:39 AM	09/06/12	09/08/12 2:48 AM	1209114-002A	09/06/12 9:41 AM	09/06/12	09/08/12 6:54 AM
1209114-003A	09/06/12 9:55 AM	09/06/12	09/08/12 6:20 AM	1209114-004A	09/06/12 10:00 AM	09/06/12	09/08/12 10:27 AM
1209114-005A	09/06/12 11:00 AM	09/06/12	09/08/12 8:26 AM	1209114-006A	09/06/12 11:05 AM	09/06/12	09/08/12 7:29 AM
1209114-007A	09/06/12 11:19 AM	09/06/12	09/08/12 9:50 AM	1209114-008A	09/06/12 11:21 AM	09/06/12	09/08/12 1:52 AM
1209114-009A	09/06/12 12:45 PM	09/06/12	09/07/12 11:03 PM	1209114-012A	09/06/12 11:30 AM	09/06/12	09/08/12 8:38 AM
1209114-013A	09/06/12 11:37 AM	09/06/12	09/08/12 8:04 AM	1209114-014A	09/06/12 12:38 PM	09/06/12	09/08/12 9:13 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

surrogate diluted out of range or surrogate coelutes with another peak

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix inteference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 70482 WorkOrder: 1209114

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1209093-012A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
. waye	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	0.60	125	123	1.01	122	70 - 130	20	70 - 130
MTBE	ND	0.10	110	109	1.09	112	70 - 130	20	70 - 130
Benzene	ND	0.10	116	111	4.23	112	70 - 130	20	70 - 130
Toluene	ND	0.10	114	110	3.79	111	70 - 130	20	70 - 130
Ethylbenzene	ND	0.10	114	111	2.34	111	70 - 130	20	70 - 130
Xylenes	ND	0.30	116	114	1.43	113	70 - 130	20	70 - 130
%SS:	108	0.10	100	113	12.1	94	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70482 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209114-001A	09/06/12 9:39 AM	09/06/12	09/08/12 7:12 PM	1209114-003A	09/06/12 9:55 AM	09/06/12	09/08/12 8:12 PM
1209114-009A	09/06/12 12:45 PM	09/06/12	09/07/12 7:42 PM	1209114-010A	09/06/12 12:35 PM	09/06/12	09/07/12 8:13 PM
1209114-011A	09/06/12 12:30 PM	09/06/12	09/07/12 8:43 PM	1209114-012A	09/06/12 11:30 AM	09/06/12	09/08/12 8:42 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 70485 WorkOrder: 1209114

EPA Method: SW8260B Extraction:	SW5030B						Spiked Sam	ple ID:	1209093-012A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, a.a., y.c	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	0.050	75.3	77.2	2.54	84.2	56 - 94	30	50 - 135
Benzene	ND	0.050	87.2	87.5	0.352	94.3	60 - 106	30	70 - 137
t-Butyl alcohol (TBA)	ND	0.20	88.4	89	0.738	96.1	56 - 140	30	50 - 143
Chlorobenzene	ND	0.050	85.9	89	3.58	93	61 - 108	30	69 - 133
1,2-Dibromoethane (EDB)	ND	0.050	83.3	85.8	2.95	89	54 - 119	30	61 - 135
1,2-Dichloroethane (1,2-DCA)	ND	0.050	87.7	87.3	0.361	91.4	48 - 115	30	64 - 133
1,1-Dichloroethene	ND	0.050	86.4	88.8	2.70	87.1	46 - 111	30	65 - 142
Diisopropyl ether (DIPE)	ND	0.050	85.7	85.3	0.451	91.8	53 - 111	30	65 - 134
Ethyl tert-butyl ether (ETBE)	ND	0.050	82.4	82.4	0	89.1	61 - 104	30	61 - 127
Methyl-t-butyl ether (MTBE)	ND	0.050	82.7	83.5	0.993	88.4	58 - 107	30	65 - 130
Toluene	ND	0.050	94.7	95.5	0.874	99.8	64 - 114	30	70 - 146
Trichloroethene	ND	0.050	94.3	94.6	0.309	99.3	60 - 116	30	66 - 143
%SS1:	104	0.12	104	102	1.47	102	64 - 117	30	70 - 130
%SS2:	109	0.12	111	111	0	110	79 - 133	30	70 - 130
%SS3:	109	0.012	97	98	0.778	104	88 - 121	30	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70485 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209114-001A	09/06/12 9:39 AM	I 09/06/12	09/11/12 5:14 PM	1209114-003A	09/06/12 9:55 AM	09/06/12	09/11/12 5:54 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW6020

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 70486 WorkOrder: 1209114

EPA Method: SW6020 Extraction: S	W3050B						Spiked Sam	ple ID:	1209093-014A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, a.a., y.c	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Antimony	ND	50	113	105	7.74	92.6	75 - 125	20	75 - 125
Arsenic	2.2	50	113	102	9.88	99.2	75 - 125	20	75 - 125
Barium	50	500	122	111	8.71	89.6	75 - 125	20	75 - 125
Beryllium	ND	50	114	104	8.78	96.4	75 - 125	20	75 - 125
Cadmium	ND	50	111	101	9.39	95.1	75 - 125	20	75 - 125
Chromium	21	50	116	103	8.33	110	75 - 125	20	75 - 125
Cobalt	5.0	50	115	104	9.87	95.9	75 - 125	20	75 - 125
Copper	6.9	50	113	103	8.17	108	75 - 125	20	75 - 125
Lead	2.2	50	111	100	9.36	94.1	75 - 125	20	75 - 125
Mercury	0.068	1.25	117	107	8.71	99.4	75 - 125	20	75 - 125
Molybdenum	ND	50	105	96.4	8.58	98	75 - 125	20	75 - 125
Nickel	21	50	117	105	8.18	108	75 - 125	20	75 - 125
Selenium	ND	50	110	104	5.09	99.8	75 - 125	20	75 - 125
Silver	ND	50	104	97.6	6.58	95.5	75 - 125	20	75 - 125
Thallium	ND	50	107	101	6.04	93.3	75 - 125	20	75 - 125
Vanadium	33	50	119	104	8.27	108	75 - 125	20	75 - 125
Zinc	19	500	114	104	8.67	104	75 - 125	20	75 - 125
%SS:	114	500	125	114	9.41	92	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70486 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209114-001A	09/06/12 9:39 AM	09/06/12	09/08/12 8:16 AM	1209114-002A	09/06/12 9:41 AM	09/06/12	09/08/12 8:24 AM
1209114-003A	09/06/12 9:55 AM	09/06/12	09/08/12 8:32 AM	1209114-004A	09/06/12 10:00 AM	09/06/12	09/08/12 8:40 AM
1209114-005A	09/06/12 11:00 AM	09/06/12	09/08/12 9:11 AM	1209114-006A	09/06/12 11:05 AM	09/06/12	09/08/12 9:19 AM
1209114-007A	09/06/12 11:19 AM	09/06/12	09/11/12 4:16 AM	1209114-008A	09/06/12 11:21 AM	09/06/12	09/11/12 4:24 AM

MMS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW6020

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 70515 WorkOrder: 1209114

EPA Method: SW6020	Extraction: SW3050B					\$	Spiked Sam	ple ID:	1209114-014A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Arsenic	8.3	50	88.6	86.7	1.90	102	75 - 125	20	75 - 125
Lead	13	50	87.2	87.5	0.230	102	75 - 125	20	75 - 125
%SS:	124	500	109	107	1.59	110	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70515 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209114-009A	09/06/12 12:45 PM	09/06/12	09/11/12 4:31 AM	1209114-012A	09/06/12 11:30 AM	09/06/12	09/11/12 4:39 AM
1209114-013A	09/06/12 11:37 AM	09/06/12	09/11/12 4:47 AM	1209114-014A	09/06/12 12:38 PM	09/06/12	09/08/12 1:43 PM

MMS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 70412 WorkOrder: 1209114

EPA Method: SW8015B Extraction: SW3550B/3630C Spiked Sample ID: 1208797-001A										
Analyte	Sample Spiked			MSD	MS-MSD	LCS	Acc	cceptance Criteria (%)		
,,	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH-Diesel (C10-C23)	17	40	NR	NR	NR	129	N/A	N/A	70 - 130	
%SS:	100	25	NR	NR	NR	117	N/A	N/A	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70412 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209114-001A	09/06/12 9:39 AM	09/06/12	09/11/12 8:48 AM	1209114-003A	09/06/12 9:55 AM	09/06/12	09/12/12 1:31 AM
1209114-009A	09/06/12 12:45 PM	09/06/12	09/13/12 1:15 PM	1209114-010A	09/06/12 12:35 PM	09/06/12	09/13/12 3:47 PM
1209114-011A	09/06/12 12:30 PM	09/06/12	09/12/12 12:22 AM	1209114-012A	09/06/12 11:30 AM	09/06/12	09/07/12 3:11 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Analytical Report

Aquifer Sciences, Inc.	quifer Sciences, Inc. Client Project ID: #212563				
3680-A Mt. Diablo Blvd		Date Received: 09/06/12			
3000 MML Blablo Biva	Client Contact: Cheri Whipp	Date Reported: 09/12/12			
Lafayette, CA 94549	Client P.O.:	Date Completed: 09/11/12			

WorkOrder: 1209113

September 19, 2012

Dear Cheri:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #212563,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc. 1209113

AQUIFER SCIENCES, INC. 3680-A Mt. Diablo Blvd.

CHAIN OF CUSTODY

			1						Lara	yette	e, CA	945	49	- (925).	283-91	133 F	AX			TI MAL		,, ,		or OD	1
Project Number:	GLOBAI 2125(3		-		Numb and	er of C		iners ve	MAGO	EPA DBTE DESTICA	DHAD MTBE	THE PARTY AND	70 DSVOCYECTAR	AND PERIODE	Frs Distriction	J. Polli	/		/-			-	nd tim	ay 🗆	
Sampler(s) Signature(s):	sta 1	h B	_	/	Police	/.,	/ /	/	/	D C	line	/:		8/	100	7/ /	//	/	/	/	/				Cluri	
Sample Identification	Date	Time	Sample Type	Unpre	HOL	HNO H	NaOF.	/	A Die	3/3	EPA AS	EPAG	EPA 626 (200)	E.	Metals.		/	/		/.	Chlipp	il:	Commo	ints	@aquifer.c jeroog @	om oqu
32	9/6/12	1306	1/20	1	7				X	X		X					Si .				Quot	e :	# 2	606)	\neg
38	9/6/12	1145	H20	7	7				\times	X		X													8081	
	1																				filter	Rt	presen	re fl	ner and	15
				,									_	_												
	30		F-2										-	+	- 20	-										_
						-	-						-	+												-
																+									•	\dashv
		20	,																							
	ICI GC	OD CONDIT	ON		APPR	OPRIAT	В													-						
	DE	AD SPACE A CHLORINAT			PRES	ERVED	IN LAE	3					4		,	1_									" 10	
	PR	ESERVATIO	N									-	-	-	-											\dashv
	Relinquish	ed by				Date	,		Гime						Ré	eceive	d by						Date		Time	Ц
Mule	M	line	e			9/6/1			52	3	/	7	1/2	00	n	r	_	Z	/-	7	5	9	16/1	2	1528	3
			-																							-
nalytical laboratory:	'arpbell	Analy	tical								Ship	ping :	notes:	V	la		W	M	,	+ 1					Page of	

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Maria Venegas

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1209113 ClientCode: ASI

	WaterTrax	WriteOn	□ EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Ві	II to:		Req	uested TAT:	5 days
Cheri Whipp	Email:	ras@aquifer.com	n; cwhipp@aquif	er.com	Accounts Pay	able			-
Aquifer Sciences, Inc.	cc:	jevans@aquifer.	com		Aquifer Scien	ces, Inc.			
3680-A Mt. Diablo Blvd	PO:				3680-A Mt. Di	ablo Blvd	Dat	e Received:	09/06/2012
Lafayette, CA 94549	ProjectNo:	#212563			Lafayette, CA	94549	Dat	e Printed:	09/06/2012
925-283-9098 FAX: 925-283-9133									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1209113-001	B2	Water	9/6/2012 13:00		В	С	Α	С								
1209113-002	B8	Water	9/6/2012 11:45		В		Α									

Test Legend:

1	8260B_W	2	CAM17MS_DISS	3	G-MBTEX_W	4	PRDISSOLVED	[5
6		7		8		9			10
11		12							

The following SampIDs: 001A, 002A contain testgroup.

Comments:

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

		Date an	nd Time Received:	9/6/2012 5:47:57 PM
		LogIn R	Reviewed by:	Maria Venegas
		Carrier:	Client Drop-In	
n of Cւ	ustody (COC)	Information	<u>on</u>	
Yes	✓	No \square		
Yes	✓	No 🗌		
Yes	✓	No \square		
Yes	✓	No \square		
Yes	✓	No \square		
Yes	✓	No \square		
Sample	Receipt Info	ormation		
Yes		No \square		NA 🗹
Yes	✓	No \square		
Yes	✓	No \square		
Yes	✓	No \square		
Yes	✓	No 🗆		
ervatio	n and Hold T	ime (HT) lı	<u>nformation</u>	
Yes	✓	No 🗌		
Coole	er Temp: 3.8	3°C		NA 🗌
Yes		No 🗆 🗈	No VOA vials submit	tted 🗸
Yes	✓	No 🗌		
Yes		No \square		NA 🗹
Yes	✓	No \square		
e: WE	TICE)			
	Yes	Yes V	LogIn F Carrier: 1	No

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled: 09/06/12
3680-A Mt. Diablo Blvd		Date Received: 09/06/12
3080-A Mt. Diabio Bivd	Client Contact: Cheri Whipp	Date Extracted: 09/12/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed: 09/12/12

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1209113

Lab ID	1209113-001B									
Client ID				B2						
Matrix				Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit			
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5			
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5			
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5			
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5			
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5			
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5			
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5			
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5			
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5			
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5			
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5			
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10			
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5			
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5			
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5			
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5			
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total	ND	1.0	0.5			

Surrogate Recoveries (%)										
%SS1:	111	%SS2:	100							
%SS3:	108		·							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Aquifer Sciences, Inc.	Client Project ID: #212563	Date Sampled: 09/06/12
2690 A Mt Diable Divid		Date Received: 09/06/12
3680-A Mt. Diablo Blvd	Client Contact: Cheri Whipp	Date Extracted: 09/10/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed: 09/10/12

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1209113

Lab ID		1209113-002B								
Client ID				B8						
Matrix		Water								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit			
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5			
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5			
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5			
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5			
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5			
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5			
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5			
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5			
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5			
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5			
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5			
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10			
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5			
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5			
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5			
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5			
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total	ND	1.0	0.5			

Surrogate Recoveries (%)								
%SS1:	110	%SS2:	101					
%SS3:	101							
%SSS:	101	<u></u>						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

when Quu	iliy Counts							
Aquifer Sciences, Inc.	Client Project ID: #212563			Date Sampled: 09/06/12				
			Date Received: 09/06/12					
3680-A Mt. Diablo Blvd	Client Co	ontact: Cheri Whi	pp	Date Extracted	09/06/12			
Lafayette, CA 94549	Client P.0				09/08/12-09	9/11/12		
Larayette, CA 74347			• •	Date Analyzed	07/00/12-0	J/ 11/12		
	C	AM / CCR 17 Met	als*					
Lab ID	1209113-001C				Reporting Lin			
Client ID	B2				ND means r above the re	not detected porting limit		
Matrix	W				MDL	RL		
Extraction Type	DISS.				μg/L	μg/L		
	ICP-N	MS Metals, Concen	tration*	<u>.</u>	<u></u>			
Analytical Method: E200.8	Ext	raction Method: E200.8			Work Order:	1209113		
Dilution Factor	10				1	1		
Antimony	ND<2.6				0.26	0.5		
Arsenic	ND<1.8				0.18	0.5		
Barium	36,J				0.45	5.0		
Beryllium	ND<0.70				0.07	0.5		
Cadmium	ND<0.40				0.04	0.25		
Chromium	3.3,J				0.16	0.5		
Cobalt	2.5,J				0.03	0.5		
Copper	4.0,J				0.07	0.5		
Lead	ND<1.0				0.1	0.5		
Mercury	0.21,J				0.01	0.025		
Molybdenum	8.0				0.05	0.5		
Nickel	8.7				0.08	0.5		
Selenium	22				0.12	0.5		
Silver	ND<1.2				0.12	0.19		
Thallium	ND<0.40				0.04	0.5		
Vanadium	1.5,J				0.07	0.5		
Zinc	41,J				0.71	5.0		
%SS:	N/A							
Comments	a12,b1							

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of 0.45 µm filtered and acidified sample.

J) analyte detected below quantitation limits

a12) reporting limit raised due to high non-reported metals content.

b1) aqueous sample that contains greater than ~1 vol. % sediment

Aquifer Sciences, Inc. Client Project ID: #212563		Date Sampled: 09/06/12
3680-A Mt. Diablo Blvd		Date Received: 09/06/12
	Client Contact: Cheri Whipp	Date Extracted 09/07/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed 09/07/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline *

Analytical methods: SW8015Bm Work Order: 1209113 Extraction method: SW5030B TPH(g) Lab ID Client ID Matrix DF % SS Comments 001A В2 W ND 1 88 b1

002A	В8	w	ND	1	86	b1

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: b1) aqueous sample that contains greater than ~1 vol. % sediment

Aquifer Sciences, Inc. Client Project ID: #212563		Date Sampled:	09/06/12
3680-A Mt. Diablo Blvd		Date Received:	09/06/12
	Client Contact: Cheri Whipp	Date Extracted:	09/06/12
Lafayette, CA 94549	Client P.O.:	Date Analyzed:	09/07/12

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up* Analytical methods: SW8015B Extraction method: SW3510C/3630C Work Order: 1209113 TPH-Diesel TPH-Motor Oil % SS DF Lab ID Client ID Matrix Comments (C10-C23) (C18-C36) 1209113-001A В2 W ND ND 1 97 **b**1 1209113-002A В8 ND ND 1 b1

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: b1) aqueous sample that contains greater than ~1 vol. % sediment

^{#)} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 70624 WorkOrder: 1209113

EPA Method: SW8260B Extraction: S	W5030B						Spiked San	ple ID:	1209088-001A
Analyte	Sample	Spiked MS MSD MS-MSD			LCS	Acceptance Criteria (%)			
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	110	108	1.71	94	70 - 130	20	70 - 130
Benzene	ND	10	97.4	96.1	1.25	96.3	70 - 130	20	76 - 106
t-Butyl alcohol (TBA)	ND	40	118	115	1.98	86.7	70 - 130	20	70 - 130
Chlorobenzene	ND	10	98.7	96.1	2.69	98	70 - 130	20	79 - 105
1,2-Dibromoethane (EDB)	ND	10	114	110	3.22	98.2	70 - 130	20	76 - 116
1,2-Dichloroethane (1,2-DCA)	ND	10	100	99	1.34	94.6	70 - 130	20	69 - 111
1,1-Dichloroethene	ND	10	95.5	95.8	0.248	97.5	70 - 130	20	70 - 104
Diisopropyl ether (DIPE)	ND	10	102	99.9	1.80	95.8	70 - 130	20	79 - 111
Ethyl tert-butyl ether (ETBE)	ND	10	108	106	1.38	98	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	109	107	1.86	93.8	70 - 130	20	70 - 130
Toluene	ND	10	95.5	93.7	1.92	96.3	70 - 130	20	70 - 130
Trichloroethene	1.2	10	99.9	98	1.84	100	70 - 130	20	70 - 130
%SS1:	109	25	111	111	0	106	70 - 130	20	70 - 130
%SS2:	100	25	99	99	0	101	70 - 130	20	70 - 130
%SS3:	106	2.5	99	100	1.59	102	70 - 130	20	70 - 130

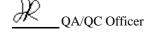
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70624 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1209113-001B	09/06/12 1:00 PM	09/12/12	09/12/12 4:03 AM	1209113-002B	09/06/12 11:45 AM	09/10/12	09/10/12 11:13 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR E200.8

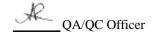
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 70475 WorkOrder: 1209113

EPA Method: E200.8 Extraction: E	200.8					5	Spiked San	ple ID:	1208640-014A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance		e Criteria (%)	
, way to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Antimony	ND	50	105	104	1.36	106	70 - 130	20	85 - 115	
Arsenic	2.2	50	104	105	0.386	104	70 - 130	20	85 - 115	
Barium	36	500	99.3	99	0.320	100	70 - 130	20	85 - 115	
Beryllium	ND	50	105	104	0.630	111	70 - 130	20	85 - 115	
Cadmium	ND	50	101	101	0	106	70 - 130	20	85 - 115	
Chromium	ND	50	99.4	100	0.761	103	70 - 130	20	85 - 115	
Cobalt	ND	50	101	102	0.433	107	70 - 130	20	85 - 115	
Copper	20	50	97.3	99.7	1.71	106	70 - 130	20	85 - 115	
Lead	ND	50	102	102	0	106	70 - 130	20	85 - 115	
Mercury	ND	1.25	114	114	0	108	70 - 130	20	85 - 115	
Molybdenum	3.0	50	103	102	0.974	104	70 - 130	20	85 - 115	
Nickel	0.64	50	97.4	98.9	1.49	105	70 - 130	20	85 - 115	
Selenium	0.82	50	102	103	0.904	105	70 - 130	20	85 - 115	
Silver	ND	50	99.4	97.9	1.52	105	70 - 130	20	85 - 115	
Thallium	ND	50	102	102	0	105	70 - 130	20	85 - 115	
Vanadium	4.1	50	103	104	0.681	104	70 - 130	20	85 - 115	
Zinc	5.9	500	98.7	99.8	1.08	107	70 - 130	20	85 - 115	
%SS:	112	750	114	113	0.129	110	70 - 130	20	85 - 115	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70475 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1209113-001C	09/06/12 1:00 PM	09/06/12	09/08/12 3:57 PM	1209113-001C	09/06/12 1:00 PM	09/06/12	09/11/12 6:18 PM	


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 70579 WorkOrder: 1209113

EPA Method: SW8021B/8015Bm Extraction: SW5030B						;	Spiked Sample ID: 1209113-002A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
. u.a.y.c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	ND	60	102	99.3	2.97	104	70 - 130	20	70 - 130	
MTBE	ND	10	103	93.4	9.93	90.4	70 - 130	20	70 - 130	
Benzene	ND	10	99.8	101	0.783	103	70 - 130	20	70 - 130	
Toluene	ND	10	100	101	0.934	105	70 - 130	20	70 - 130	
Ethylbenzene	ND	10	103	104	0.726	106	70 - 130	20	70 - 130	
Xylenes	ND	30	105	107	1.76	108	70 - 130	20	70 - 130	
%SS:	86	10	92	95	3.19	92	70 - 130	20	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70579 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1209113-001A	09/06/12 1:00 PM	09/07/12	09/07/12 2:23 PM	1209113-002A	09/06/12 11:45 AM	09/07/12	09/07/12 2:54 PM	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

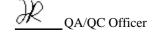
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 70512 WorkOrder: 1209113

EPA Method: SW8015B Extraction: S	W3510C/36	3510C/3630C					Spiked Sample ID: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)		Criteria (%)
,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	112	N/A	N/A	70 - 130
%SS:	N/A	625	N/A	N/A	N/A	98	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 70512 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1209113-001A	09/06/12 1:00 PM	I 09/06/12	09/07/12 3:11 AM	1209113-002A	09/06/12 11:45 AM	09/06/12	09/07/12 4:17 AM	


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

